Reconstruction of three-dimensional multi-finger movements from MEG signals
نویسندگان
چکیده
منابع مشابه
Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals.
It is generally thought that the signal-to-noise ratio, the bandwidth, and the information content of neural data acquired via noninvasive scalp electroencephalography (EEG) are insufficient to extract detailed information about natural, multijoint movements of the upper limb. Here, we challenge this assumption by continuously decoding three-dimensional (3D) hand velocity from neural data acqui...
متن کاملAnalyzing octopus movements using three-dimensional reconstruction.
Octopus arms, as well as other muscular hydrostats, are characterized by a very large number of degrees of freedom and a rich motion repertoire. Over the years, several attempts have been made to elucidate the interplay between the biomechanics of these organs and their control systems. Recent developments in electrophysiological recordings from both the arms and brains of behaving octopuses ma...
متن کاملDecoding Ipsilateral Finger Movements from ECoG Signals in Humans
Several motor related Brain Computer Interfaces (BCIs) have been developed over the years that use activity decoded from the contralateral hemisphere to operate devices. Contralateral primary motor cortex is also the region most severely affected by hemispheric stroke. Recent studies have identified ipsilateral cortical activity in planning of motor movements and its potential implications for ...
متن کاملDecoding finger movements from ECoG signals using Empirical Mode Decomposition
ECoG promises exact localization of brain sources by providing high spatial resolution and good signal quality, thus makes it the premier choice for future BCI applications. Unfortunately decoding these signals is not as straightforward as one would expect. In this work we applied a time-frequency analysis based on Empirical Mode decomposition (EMD) and Adaptive Filtering (AF) to decode and est...
متن کاملDecoding Finger Movements from ECoG Signals Using Switching Linear Models
One of the most interesting challenges in ECoG-based Brain-Machine Interface is movement prediction. Being able to perform such a prediction paves the way to high-degree precision command for a machine such as a robotic arm or robotic hands. As a witness of the BCI community increasing interest toward such a problem, the fourth BCI Competition provides a dataset which aim is to predict individu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Computational Neuroscience
سال: 2015
ISSN: 1662-5188
DOI: 10.3389/conf.fncom.2015.56.00007